A first-in-class Menin-MLL1 antagonist for the treatment of MLL-r and NPM1 mutant leukemias

Jerry McGeehan PhD
Syndax Pharmaceuticals
Disclosure

I am an employee and shareholder of Syndax Pharmaceuticals, Inc.
Forward-looking statements disclosure

This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Words such as "may," "will," "expect," "plan," "anticipate" and similar expressions (as well as other words or expressions referencing future events or circumstances) are intended to identify forward-looking statements. All statements other than statements of historical facts contained in this presentation, including statements regarding future operations, financial results and the financial condition of Syndax Pharmaceuticals, Inc. (“Syndax” or the “Company”), including financial position, strategy and plans, the progress, timing, clinical development and scope of clinical trials and the reporting of clinical data for Syndax’s product candidates, and Syndax’s expectations for liquidity and future operations, are forward-looking statements. Many factors may cause differences between current expectations and actual results, including unexpected safety or efficacy data observed during preclinical or clinical studies, clinical site activation rates or clinical trial enrollment rates that are lower than expected, changes in expected or existing competition, failure of our collaborators to support or advance collaborations or product candidates and unexpected litigation or other disputes. Moreover, Syndax operates in a very competitive and rapidly changing environment. Other factors that may cause our actual results to differ from current expectations are discussed in Syndax’s filings with the U.S. Securities and Exchange Commission, including the “Risk Factors” sections contained therein. New risks emerge from time to time. It is not possible for Syndax’s management to predict all risks, nor can Syndax assess the impact of all factors on its business or the extent to which any factor, or combination of factors, may cause actual results to differ materially from those contained in any forward-looking statement. In light of these risks, uncertainties and assumptions, the forward-looking events and circumstances discussed in this presentation may not occur and actual results could differ materially and adversely from those anticipated or implied. Except as required by law, neither Syndax nor any other person assumes responsibility for the accuracy and completeness of the forward-looking statements. Syndax undertakes no obligation to update publicly any forward-looking statements for any reason after the date of this presentation to conform these statements to actual results or to changes in Syndax’s expectations.
Overview of Mixed Lineage Leukemia-rearranged (MLL-r) and Nucleophosmin Mutant AML (NPM1c+ AML)

MLL-r is caused by translocations at the MLL1 locus that create oncogenic MLL-fusion proteins
- MLL-r is an acute leukemia that presents as ALL or AML, commonly diagnosed at presentation (FISH)
- *MLL*-rearrangements are found in ~5-10% of AML and ALL cases, for a combined incidence ~7000+/yr
- Targeting of MEN:MLL interaction in *MLL*-r cells blocks cell proliferation

NPM1c+ AML is caused by mutations in NPM1 gene
- NPM1c is one of the most common mutations found in AML, diagnosed with standard NGS panels
- NPM1c represents about 30% of all adult AML and an incidence of ~ 20,000/yr
- Targeting of MEN:MLL1 interaction in *NPM1c+ AML* inhibits cell proliferation
Menin-MLL binding inhibition leads to loss of the leukemic transcription program in MLLr/NPM1c, causing terminal differentiation of cells.

SNDX-5613 occupies the MLL1 binding pocket on Menin.

SNDX-5613 inhibits Menin-MLLr interaction.

Menin inhibitors cause significant changes in the transcription program by evicting Menin from chromatin.

<table>
<thead>
<tr>
<th>CELL LINE</th>
<th>LINEAGE</th>
<th>GENETIC LESION</th>
<th>IC50, nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL-60</td>
<td>AML</td>
<td>PML-RARα</td>
<td>>2000</td>
</tr>
<tr>
<td>MOLM13</td>
<td>AML</td>
<td>MLL-AF9</td>
<td>13 +/- 9</td>
</tr>
<tr>
<td>THP1</td>
<td>AML</td>
<td>MLL-AF9</td>
<td>37 +/- 21</td>
</tr>
<tr>
<td>NOMO1</td>
<td>AML</td>
<td>MLL-AF9</td>
<td>30 +/- 12</td>
</tr>
<tr>
<td>ML2</td>
<td>AML</td>
<td>MLL-AF8</td>
<td>18 +/- 9</td>
</tr>
<tr>
<td>EOL1</td>
<td>AML</td>
<td>MLL-PTD</td>
<td>20 +/- 10</td>
</tr>
</tbody>
</table>

MOLM13 (MLL-AF9)

Day 3

Free protein

<table>
<thead>
<tr>
<th>Fraction#</th>
<th>~ 1 mDa</th>
<th>~ 2 mDa</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td>MEN</td>
<td>MEN</td>
</tr>
<tr>
<td>VTP 0.3uM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MOLM13

- **Day 2**
 - ZNF521
 - MRTNR1
 - PEX1
 - MED1
 - MEF2C
 - CASC10
 - MYO6
 - EFNA5
 - MNK1
 - NFR3
 - CNOT4
 - SOCS2
 - ADGPR2
 - ALDH1A1
 - RPE75
 - SGO1
 - SQRD1
 - SOBP
 - RHOBTB1
 - DYNC111
 - SKD1A1
 - APF71
 - CCDC144

- **Day 7**
 - ZNF521
 - MRTNR1
 - PEX1
 - MED1
 - MEF2C
 - CASC10
 - MYO6
 - EFNA5
 - MNK1
 - NFR3
 - CNOT4
 - SOCS2
 - ADGPR2
 - ALDH1A1
 - RPE75
 - SGO1
 - SQRD1
 - SOBP
 - RHOBTB1
 - DYNC111
 - SKD1A1
 - APF71
 - CCDC144

SNDX-50469

- Me
 - O=S=O
 - HNₙ
 - N
 - N
 - N
 - O
 - F

K73me2 DOT1L

- MLL1n retained
- MLL1n reduced

HOXA cluster

- MYB
- MEF2C
- MEIS1
- JMJ1D1C
Menin inhibitors have profound single-agent activity in MLL-r PDX models, producing deep and durable responses

- Significant survival benefit in 7/8 PDXs after single 28d treatment with SNDX-469
- Profound effects on PDX-MLL-1 and PDX-MLL-2 with event free survival >1 yr
- No treatment effect on control non-MLLr leukemia ALL-56 (Ph+)

Source: Krivtsov, A. Cancer Cell. 2019 Dec 9;36(6):660-673; Animals treated orally for 28 days with vehicle or VTP-50469 (MTD; 120 mg/kg bid)
Menin inhibitors also have profound single-agent activity in NPM1c PDX models, producing deep and durable responses.

- i.v. Engraft 5-75% PB Leukemia
- ~90 Day Treatment SNDX-50469 formulated in Chow

Uckelmann, HJ. Science. 2020 Jan 31;367(6477):586-590
SNDX-5613 pharmacologic profile shows high potency and specificity for Menin - MLL inhibition

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Summary of findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>in vitro / in vivo profile</td>
<td></td>
</tr>
<tr>
<td>Binding K_i</td>
<td>0.149 nM</td>
</tr>
<tr>
<td>Cell based IC$_{50}$</td>
<td>10 – 20 nM</td>
</tr>
<tr>
<td>in vivo (Plasma) IC$_{50}$ (nM)</td>
<td></td>
</tr>
<tr>
<td>(Plasma) IC$_{50}$ (nM)</td>
<td>53 nM</td>
</tr>
<tr>
<td>Specificity (>125 enzyme/receptor)</td>
<td>No off-target binding @10 µM</td>
</tr>
<tr>
<td>ADME properties</td>
<td></td>
</tr>
<tr>
<td>% F (r, d)</td>
<td>29, 65</td>
</tr>
<tr>
<td>i.v. $t_{1/2}$ (r, d)</td>
<td>2, 3.3</td>
</tr>
<tr>
<td>% unbound at 10 mM (PPB)</td>
<td>32%</td>
</tr>
<tr>
<td>CYP inhibition / induction</td>
<td>$>$ 10 µM</td>
</tr>
<tr>
<td>Metabolism</td>
<td>Primarily via CYP3A4</td>
</tr>
<tr>
<td>Safety / toxicology</td>
<td></td>
</tr>
<tr>
<td>Safety hERG IC$_{50}$</td>
<td>5 µM - 15 µM</td>
</tr>
<tr>
<td>GLP toxicity (r, d)</td>
<td>Consistent with primary MOA</td>
</tr>
<tr>
<td>Genotoxicity (Ames, MNT)</td>
<td>Negative</td>
</tr>
</tbody>
</table>
SNDX-5613 treatment provides significant survival benefit and leukemic control in aggressive MOLM-13 disseminated xenografts

K-M Survival

- **Day of Study**
 - Control Chow
 - 0.025% SNDX-5613
 - 0.05% SNDX-5613
 - 0.1% SNDX-5613
 - 0.2% SNDX-5613

- **Percent survival**

MOLM-13 %hCD45+ PB

- **SNDX-5613 Concentration in the Diets**
 - 0.025%
 - 0.05%
 - 0.1%
 - 0.2%
Steady-state plasma PK analysis clarifies the drug exposures required for leukemic control in MOLM-13 xenografts

ss Plasma Levels

<table>
<thead>
<tr>
<th>DOSE STRENGTH</th>
<th>AVE CONC</th>
<th>AUC<sub>0-24</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>ng/ml</td>
<td>ng*hr/ml</td>
</tr>
<tr>
<td>0.025</td>
<td>203</td>
<td>4900</td>
</tr>
<tr>
<td>0.05</td>
<td>573</td>
<td>13700</td>
</tr>
<tr>
<td>0.10</td>
<td>1425</td>
<td>34200</td>
</tr>
<tr>
<td>0.20</td>
<td>2713</td>
<td>65100</td>
</tr>
</tbody>
</table>

i.v. Engraft 5 days

28 Day Treatment

SNDX-5613 Formulated in Chow

MOLM-13 %hCD45⁺ PB
Maintain steady state levels above IC_{95} (~600 ng/mL) for most of dosing interval

Maintain C_{min} level above projected IC_{90} (~300 ng/mL)

Minimum 24 h AUC of ~30,000 ng*h/mL
AUGMENT-101: Phase 1/2 trial of SNDX-5613, in patients with acute leukemia

Phase 1: Dose escalation

- Enrolling R/R acute leukemias*
- Accel. titration into 3+3 design
- 28-day cycle
- Starting dose = 113 mg PO BID

Endpoints: Safety, PK, RP2D

Phase 2: Expansion

- Adult MLL-r ALL
- Adult MLL-r AML
- Adult NPM1 mut AML

Primary endpoint: CR Rate (CR + CRh^)

* Unselected population; ^ CR = Complete response, CRh = Complete response with partial hematologic recovery; MLL-r = mixed lineage leukemia rearranged; NPM = nucleophosmin
Patient #1: 113 mg PO q12h

Patient Characteristics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender, Age</td>
<td>Male, 60 yr old</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>Refractory AML</td>
</tr>
<tr>
<td>Mutational status</td>
<td>No MLLr or NPM1 mutation</td>
</tr>
<tr>
<td>Prior lines of therapy</td>
<td>3 (Aza, Dec/Ven, CLAG-M)</td>
</tr>
<tr>
<td>SNDX-5613 dose</td>
<td>113 mg PO q12 hr</td>
</tr>
<tr>
<td>DLT period</td>
<td>No DLTs</td>
</tr>
<tr>
<td>Day 28 response</td>
<td>Progressive disease</td>
</tr>
</tbody>
</table>

- Day 8 $C_{min} = 251$ ng/mL
- Day 8 est. $AUC_{0-24} = 12,200$ ng*h/ml

CR = Complete response, CRh = Complete response with partial hematologic recovery, CRi = complete remission with incomplete hematologic recovery
Patient #2: 226 mg PO q12h

Patient Characteristics

Gender, Age Female, 69 yr old
Diagnosis Refractory MPAL
Mutational status MLL-TET1 fusion, FLT3 ITD
Prior lines of therapy 2 (chemo, gilteritinib)
SNDX-5613 dose 226 mg PO q12 h
DLT period No DLTs; Grade 2 QTc resolved with dose reduced to 113 mg q12h
Day 28 response CRi; beyond DLT period has improved to CR while on reduced dose

Patient #2: 226 mg BID Day 1 and Day 8

- Day 8 $C_{\text{min}} = 3030 \text{ ng/mL}$
- Day 8 est. $AUC_{0-24} = 93,900 \text{ ng*h/ml}$

CR = Complete response, CRh = Complete response with partial hematologic recovery, CRi = complete remission with incomplete hematologic recovery
Response summary to date - Patients not on CYP3A4 Inhibitor

<table>
<thead>
<tr>
<th>Pt #</th>
<th>Age</th>
<th># Prior Tx</th>
<th>Mutational status</th>
<th>Dose</th>
<th>Meets target PK profile^</th>
<th>DLT period</th>
<th>Response Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>3</td>
<td>None*</td>
<td>113 q12</td>
<td>No</td>
<td>No DLTs</td>
<td>Progressive Disease/ off study</td>
</tr>
<tr>
<td>3</td>
<td>32</td>
<td>8</td>
<td>MLL-r t(5;11)</td>
<td>226 q12</td>
<td>No</td>
<td>No DLTs</td>
<td>No Response/ on study</td>
</tr>
</tbody>
</table>

5 pediatric patients (ages 1.5 – 10 years) all with MLL-rearrangements treated on single patient INDs:
- none were on CYP3A4 inhibitors
- none achieved the target PK profile
- and none had a response to date

PK exposures in pediatric patients generally consistent with adult exposures at equivalent dose

* Patient did not have either MLLr or NPM1 mutant AML; ^ Target PK profile defined as: (1) maintaining steady state levels above IC95 (~600 ng/mL) for most of dosing interval, (2) maintaining Cmin level above projected IC90 (~300 ng/mL) and (3) achieving a minimum 24 h AUC of ~30,000 ng*h/mL
Response summary to date - Patients on Strong CYP3A4 Inhibitor

<table>
<thead>
<tr>
<th>Pt #</th>
<th>Age</th>
<th># Prior Tx</th>
<th>Mutational status</th>
<th>Dose</th>
<th>Meets target PK profile(^{\wedge})</th>
<th>DLT period</th>
<th>Response Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>69</td>
<td>2</td>
<td>MLL-r t(10;11) FLT3 ITD</td>
<td>226 q12 → 113 q12</td>
<td>Yes</td>
<td>No DLTs</td>
<td>Day 28 CRi - improved to CR FISH neg, Flow neg, on study</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>>3</td>
<td>None*</td>
<td>226 q12</td>
<td>PK pending</td>
<td>Inevaluable</td>
<td>Progressive Disease off study</td>
</tr>
<tr>
<td>5</td>
<td>79</td>
<td>2</td>
<td>MLL PTD</td>
<td>226 q12</td>
<td>PK pending</td>
<td>No DLTs</td>
<td>Day 28: No Response on study</td>
</tr>
<tr>
<td>6</td>
<td>61</td>
<td>3</td>
<td>MLL-r t(9;11)</td>
<td>113 q12 → 113 QD</td>
<td>PK pending</td>
<td>No DLTs</td>
<td>Day 28 PRi blast count 40% → 20%; peripheral blood counts improving; FISH positive on study</td>
</tr>
</tbody>
</table>

*Patient did not have either MLLr or NPM1 mutant AML; \(^{\wedge}\)Target PK profile defined as: (1) maintaining steady state levels above IC\(_{95}\) (~600 ng/mL) for most of dosing interval, (2) maintaining Cmin level above projected IC\(_{90}\) (~300 ng/mL) and (3) achieving a minimum 24 h AUC of ~30,000 ng*h/mL.
Menin-MLL interaction inhibitors represent a novel, targeted therapy for Mixed Lineage Leukemia-rearranged (MLL-r) and NPM1 mutant AML.

SNDX-5613 is a potent, selective, orally available inhibitor of menin-MLL1:

- Attractive biopharmaceutical properties
- Monotherapy activity in multiple preclinical xenograft models
- Pharmacokinetics appear affected by concomitant CYP3A4 inhibition
- Clinical responses validate menin-MLL1 inhibition as a target for select patients with acute leukemia

Clinical investigation of SNDX-5613 is ongoing.
Acknowledgements

Dana Farber Cancer Institute
Scott A. Armstrong
Andrei V. Krivtsov
Hannah Uckelmann

Children’s Cancer Inst. (Sydney)
Richard B. Lock
Kathryn Evans
Tara Pritchard

National Cancer Institute (PPTC)
Malcolm A. Smith
Beverly A. Teicher

Vitae Pharmaceuticals
Deepak Lala
Yi Zhao
Yuri Bukhtiyarov
David Claremon
Shankar Venkatraman
Brian McKeever
Joe Chen

AUGMENT-101 Trialists
Manish Patel
Michael Thirman
Eytan Stein
Richard Stone
John DiPersio
Ghayas Issa
Ibrahim Aldoss
Chetasi Telati

Syndax Pharmaceuticals
Galit Rosen
Susan Brower
Sue Fischer
Suniket Fulzele
Shaliny Kushwaha
Ariane Marolewski
Michael Meyers
Peter Ordentlich
Serap Sankoh
LeRoy Stafford
David Tamang