VTP-50469 is a novel, orally-available Menin-MLL1 inhibitor effective against *MLL*-rearranged and *NPM1c*+ leukemia

Andrei V. Krivtsov¹, Gerard M. McGeehan² and Scott A. Armstrong¹

1 Department of Pediatric Oncology and Center for Pediatric Cancer Therapeutics, Dana-Farber Cancer Institute, Boston, MA

2 Syndax Pharmaceuticals, Inc., Waltham, MA
Introduction:

• MLL-rearrangements are found approximately 5-10% of AML and B-ALL cases, also >70% of infant leukemias (Krivtsov and Armstrong 2007). NPM1c+ mutations are found in about 30% of all adult AML (Ley T et al., 2013).

• First generation MLL:MEN inhibitors show that targeting of the MEN:MLL1 interaction inhibits cell proliferation in MLL-rearranged and NPM1c+ AML. (Yokoyama et al 2005; Borkin et al., 2015; Kuhn et al., 2015)

• Currently available MEN:MLL interaction inhibitors have modest drug like properties. Therefore, VTP-50469 was developed as a novel orally available MEN:MLL1 inhibitor.
VTP-50469 selectively inhibits proliferation of cell lines with \textit{MLL}-rearrangements and \textit{NPM1c}⁺ mutations.

\begin{itemize}
 \item Colony forming assay in semi-solid media
 \item CellTiter-Glo assay
\end{itemize}

\begin{table}
\begin{tabular}{|c|c|c|}
\hline
CELL LINE & FUSION & IC\textsubscript{50} nM \\
\hline
MV4;11 & MLL-AF4 & 17 \\
SEM-K2 & MLL-AF4, AF4-MLL & 27 \\
RS4;11 & MLL-AF4, AF4-MLL & 25 \\
MOLM-13 & MLL-AF9 & 13 \\
KOPN-8 & MLL-ENL & 15 \\
IBI1;19 & MLL-ENL & 36 \\
REH & NONE & >>2000 \\
HL-60 & NONE & >>2000 \\
\hline
\end{tabular}
\end{table}
VTP-50469 dissociates MEN from nuclear complexes

Glycerol gradient (10%-20%) fractionation of nuclear extracts, 300mM NaCl

<table>
<thead>
<tr>
<th>Fraction#</th>
<th>Free protein</th>
<th>~ 1 mDa</th>
<th>~ 2 mDa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MOLM13 (MLL-AF9)

Day 3

VTP-469 0.3uM

Identical fractionation results obtained from RS4;11 (MLL-AF4), ML-2 (MLL-AF6) and OCI-AML3 (NPM1c+) Cells
VTP-50469 treatment leads to MEN loss from TSS in *MLL*-rearranged cell lines
VTP-50469 treatment evicts DOT1L from Chromatin
VTP-50469 treatment evicts DOT1L from MLL-fusion target genes

Identical ChIP-seq results obtained from RS4;11 (MLL-AF4) cells
Treatment with VTP-50469 suppresses MLL-fusion target and DOT1L inhibitor sensitive genes

RS4;11, 3 days

VTP,469 vs DMSO

243

335

Gene lists:
Tags > 10
p-val < 0.05

MLL-AF4 targets

HOXA5
MEIS1
HOXA9
MEF2C
HOXA10

Fold change (log2)

VTP-50469 treatment changes expression of MLL-target and DOT1L inhibitor sensitive genes faster as compared to EPZ4777

May be in part due to eviction of DOT1L from chromatin as opposed to enzyme inhibition
VTP-50469 treatment reduces leukemia burden in PDX models of MLL-r and NPM1 mutant leukemia

1-10% Leukemia in PB

0.1% VTP, 100 mpk (IC₉₀)

Plasma conc. 1-2 uM

R²=0.93

MLL-r B-ALL (n=3) and AML (n=2); NPM1c⁺ AML (n=4)

No response in AML without NPM1 mutations or MLL-Rearrangements
Combined DOT1L and Menin Inhibitors are Active Against MLL-Rearranged NPM1 Mutant AML Cells

MLL-r-AML

Npm1-mutant AML

![Diagram showing molecular interactions and experimental results]
Conclusions:

• VTP-50469 specifically inhibits proliferation of cell lines carrying *MLL*-rearrangements or *NPM1c*+ mutations with an IC$_{50}<$40 nM.

• VTP-50469 facilitates dissociation of MEN from high molecular weight complexes and leads to eviction of MEN, MLL-fusions (at some loci) and DOT1L from chromatin and reverses MLL-fusion driven gene expression.

• Treatment of *MLL*-r and *NPM1c*+ PDX models with VTP-50469 leads to differentiation, significant reduction of leukemia burden and prolonged survival.
Acknowledgments

Armstrong Lab
Zhaohui Feng
Andrei Krivtsov
Jennifer Perry
Ken Ross
Xi Wang
Haihua Chu
Takayuki Hoshii
Gerry Brien
Haiming Xu
Hannah Uckelmann
Sarah Perlay
Stephanie Kim
Sayuri Kitajima
Brandon Aubrey
Naomi Olsen

NIH/NCI
Malcolm Smith

Children’s Cancer Institute
Richard Lock
Kathryn Evans

Vitae/Syndax
Gerard M. McGeehan
David Claremon
Shankar Venkatraman
Linghang Zhuang
Deepak Lala
Yuri Bukhtiyarov
Yi Zhao
Brian McKeever